Student involvement and innovative teaching methods in a biophilic design education pilot elective course in interior architecture

0
Student involvement and innovative teaching methods in a biophilic design education pilot elective course in interior architecture

Focus group study and interviews

For this study, pilot elective courses titled “TMF 444 İç Mimarlıkta Biyofilik Tasarım “ and “FAE424 Biophilic Design in Interior Architecture” were offered in both Turkish and English language departments during the 2022–2023 Spring Semester at the Faculty of Architecture, Department of Interior Architecture, Near East University. However, before opening the courses in line with the stated objectives and methodologies of the research, students were actively involved in the curriculum development processes of these courses, with the aim of creating a more efficient and dynamic elective course. Additionally, the opinions of various faculty members were sought.

Initially, a focus group study with open-ended questions was conducted with a total of 18 students, 10 from NEU’s and 8 from YU’s Faculty of Architecture. The responses from this study were evaluated using the MAXQDA 2022 (VERBI Software, 2021) program and subjected to the keyword analysis method. The study sought to ascertain the student’s familiarity with the concept of biophilic design, their expectations for an upcoming elective course on this subject, their preferences for course activities and assessment methods, their views on effective teaching techniques, and their integration into academic courses, as well as the motivating factors driving their active engagement in these courses. The analysis highlights from the focus group study are summarized in Table 1.

Table 1 Highlights from the focus group study analysis.

The highlights from the interviews with the instructors indicated that it is important to approach students in a friendlier manner and use innovative teaching techniques to create a more engaging class environment while considering students’ voices to develop the course in general.

Course period

After evaluating the data in Table 1 and the interview outputs, course contents for TMF 444 and FAE 424 were developed following the NEU course content development rules. An overview of the course syllabus is presented in Table 2.

Table 2 Overview of the TMF 444 and FAE 424 courses.

The 14-week course commenced with an introductory week, determining the student demographic, midterm and final assessments, and administering a survey on students’ perceptions of biophilic design, innovative learning methods, and in-class motivations. Weeks 2–8 predominantly focused on various topics such as the concept of biophilia, patterns and health impact of biophilic design, differences and similarities between biophilic design and sustainable design, the concept of biophilic cities, and some practical ways of incorporating biophilic design principals to the interior spaces as well as the examination of example case studies. Week 9 centered around the midterm presentation, involving the analysis of a chosen structure based on biophilic design criteria. Weeks 10–14 were allocated for the creation of an interior design project emphasizing biophilic design, followed by desk critiques. Ultimately, developed projects were submitted as the final assessment.

In the proposed pilot elective course, 26 students enrolled in the Turkish section, while 11 students registered for the English section. Among these, 20 students attended the Turkish course, and 7 students attended the English course for the whole semester. The overall distribution of students by department and class includes 16 Interior Architecture students (14 undergraduate 3rd year, 2 undergraduate 4th year) and 9 Architecture students (1 undergraduate 1st year, pursuing a double major, 1 undergraduate 2nd year, 4 undergraduate 3rd year, and 3 undergraduate 4th year). Given that a substantial proportion of students enrolled in both FAE 424 and TMF 444 courses are representative of Generation Z, this study also investigates the challenges encountered by instructors in this demographic context. As the course unfolds, the difficulties of being an instructor in a class dominated by Gen Z learners are explored. The paramount question becomes: how can these challenges be effectively addressed, and what methods can be employed to construct a participatory course structure that enhances learning outcomes? Drawing inspiration from contemporary educational research, including works by Orr et al. (2021), Saxena and Mishra (2021), Szabó et al. (2021), Chan and Lee (2023), Mohr and Mohr (2017), Marie and Kaur (2020), and Jaleniauskiene and Juceviciene (2015) this study consolidates diverse strategies to enhance the student engagement and participation for teaching Gen Z in higher education. As, Orr advocates for an academic coaching model, emphasizing transformational learning. Saxena proposes gamification as a motivational tool, and Szabó underscores the significance of incorporating various information technologies, such as e-learning and gamification, to boost student motivation and skill development Chan’s study delves into Gen Z students’ perceptions of generative AI in higher education, noting their optimism for its benefits—enhanced productivity and personalized learning. However, it emphasizes the concerns raised by Gen X and Gen Y teachers regarding overreliance and ethical implications, highlighting the importance of integrating technology with traditional teaching methods for a more effective learning environment. Mohr’s study emphasizes the significance of understanding generational profiles to improve course assignments and communication approaches. The findings emphasize the need for instructors to adapt teaching methods to align with Gen Z’s preferences for technology-driven and visually engaging educational experiences, and Marie’s research highlights Gen Z’s inclination towards a digitized learning environment, emphasizing the importance of adapting academic opportunities to meet their diverse needs and foster critical 21st-century skills like critical thinking and creativity. Finally, Jaleniauskienė’s study focuses on reshaping educational environments to cater to Gen Z’s learning preferences. The recommendations span from redesigning physical and non-classroom spaces to accommodate diverse learning styles, integrating active learning methodologies, fostering collaborative environments (both physical and virtual), and leveraging technology as mindtools to enhance cognitive functions and engage visually oriented learners. In summary, advocation for a multifaceted approach that integrates technology, personalized coaching, gamification, and varied pedagogical strategies to create engaging, transformative, and inclusive learning environments for Gen Z learners.

Therefore, interactive presentations were prepared during the course, leveraging Genially (Genially Web, S.L., 2021) and Gamma (Gamma Tech, Inc., 2022), as they facilitated engagement, aligning with the 5 students who identified the fluidity of course delivery as a significant motivator for participation. To maintain interactivity and motivation, quizzes at the end of the course were conducted through Quizizz (Gupta and Cheenath, 2015), with a 10-point bonus awarded to the student with the highest quiz average throughout the semester. Moreover, practical exercises were conducted utilizing Miro (Khusid and Shardin, 2011) to incorporate active learning strategies, thereby cultivating collaborative learning settings. A specific instance of the Miro exercise is illustrated in Fig. 2.

Fig. 2
figure 2

In-class exercise by Miro.

While implementing the assignments, based on the findings from the focus group study, even if the majority of students expressed a preference for being able to choose assignment types, it was acknowledged in interviews that this approach might lead to potential issues, such as providing enough sources for each type of assignment or concerns related to students blaming each other for grades, finding others’ assignments easier, etc. Consequently, for this pilot course, it was decided that the assignment types would be determined by the course instructor, and for midterm and final assessments, students would be consulted at the beginning of the course to reach a decision by majority agreement. Additionally, as 8 of the students expressed the utility of peer evaluations, and recognized their potential to enhance motivation and interest in the course, a 10-point peer evaluation criterion was incorporated into one of the assignments and midterm presentations. The assignment incorporating peer assessment was a brief research task, designed to encourage students to share their findings during class and contribute to each other’s ideas. The assignment brief and grading criteria are outlined in Fig. 3.

Fig. 3
figure 3

Assignment 1 brief and grading criteria.

For the midterm assessment, students were expected to select a structure and analyze it based on the principles of biophilic design, presenting their analysis during class. Peer assessment was incorporated during the midterm too, where students evaluated each other’s presentations. Last but not least, in the final assessment, influenced by both the preference for project submissions by 2 of the students and the suggestion of integration with project or studio courses 2 students were required to choose an area from project courses. They were expected to develop their designs for three weeks based on the desk critics, express them through technical drawings, and provide a written explanation of how they integrated biophilic design principles. The midterm and final briefs, along with grading criteria, are illustrated in Fig. 4.

Fig. 4
figure 4

Midterm and final briefs.

Additionally, although field trips were identified as a factor that could enhance student motivation and contribute to achieving the learning outcomes of the course, they could not be added to the course content due to financial constraints. Nonetheless, an exploration of a diminutive village distinguished by a plethora of biophilic attributes in the TRNC was undertaken in collaboration with two students from the course. The ensuing research findings were subsequently disseminated and made publicly accessible via the webpage hosted by the biophilic cities network (Özbey et al. 2023).

Findings

This section includes the results of qualitative and quantitative assessment surveys conducted at the beginning and end of the course. The findings in this section are broadly analyzed in the discussion section.

Pre-course expectations and motivations

A brief survey was administered to 27 enrolled students within the initial week of the course to measure their awareness and expectations concerning biophilic design, the course syllabus, and innovative learning methodologies. Furthermore, the delineation of a course syllabus was elucidated to students, and the impact of a student-contributed syllabus on enrolled students was examined. Out of the enrolled students, 25 participated in the survey, and the outcomes, encompassing their knowledge levels and application of biophilic design principles, have been consolidated in Fig. 5.

Fig. 5
figure 5

Summary of pre-course survey (Biophilic design knowledge).

According to the table, participants’ familiarity with biophilic design varied across the terms “biophilia” and “biophilic design,” with a higher level of recognition for the former term than the latter. However, awareness of the “Six Principles of Biophilic Design” was notably lower, indicating a more diverse range of responses across the spectrum from familiarity to unfamiliarity with these principles. There’s a strong consensus among respondents that biophilic design should be integrated into interior design, particularly in emphasizing the importance of designs that amalgamate nature, humanity, and architecture. Participants largely acknowledge that the weakening of connections between nature and humanity can adversely affect human life. There’s substantial agreement on the positive impact of natural light and ventilation on health, success, and work productivity in spaces. The use of “plants” as a design element in interiors garners notable agreement, while the inclusion of a “water element” seems to have a mixed response.

When examining students’ expectations regarding course syllabus and innovative learning methods, a majority of respondents concur that the provided learning outcomes and resources exhibit direct relevance to the course. Furthermore, there is a prevailing consensus indicating that the assessment methods delineated in the syllabus maintain a sense of equilibrium. A significant majority of students express confidence in their ability to extrapolate and apply the course content to other academic subjects. The recognition of abundant opportunities for peer interaction, notably through group discussions and activities, is acknowledged by a substantial number of participants. Regarding familiarity with interactive learning tools such as Sli.do, Padlet, Kahoot, and similar platforms, respondents exhibit varying degrees of awareness and experience with these tools. A comprehensive summary of the distribution of students’ survey responses is outlined in Fig. 6.

Fig. 6
figure 6

Summary of pre-course survey (evaluation, of course, syllabi, and innovative learning methods).

Post-course reflections and feedback

Feedback on the co-design process, learning environment, and their influence on student engagement

Out of the 27 students attending the course, 23 voluntarily responded to the survey conducted at the end of the semester. When considering the effects of the student-contributed course syllabus and the interactive course format on student obligations, it becomes evident that students derive pleasure from the interactive format and perceive the course as a conducive space for engaging with their peers. Moreover, students found the short quizzes administered at the end of the course both enjoyable and beneficial. The evaluation methods, such as assignments, midterms, and finals determined based on the preferences of students enrolled in the class and who attended focus group sessions, have been deemed sufficient by a significant majority of students for assessing and presenting their knowledge. Additionally, students expressed enjoyment and perceived usefulness from the group activities and peer assessments conducted during the course. The responses of students regarding the co-design process and its impact on their engagement have been summarized in Fig. 7.

Fig. 7
figure 7

The responses of students regarding the co-design process and its impact on their engagement.

Feedback on the biophilic design knowledge, learning outcomes, and course instructor

In the end-of-term evaluation survey responded to by 23 students, in addition to gathering insights on students’ perspectives concerning the course period and assessment methods, inquiries were also posed regarding their understanding of biophilic design concepts, perceptions of the course’s learning outcomes, and the instructor’s behavior during the class.

In the students’ end-of-term survey regarding biophilic design, a notable pattern emerges: the respondents consistently exhibit a significant degree of familiarity and comprehension spanning a wide range of biophilic design concepts. This pattern underscores a robust knowledge improvement within the surveyed group, showcasing a comprehensive understanding of various aspects of the biophilic design domain. According to the survey results, there is a high level of agreement regarding the awareness of specific terminologies associated with biophilic design. However, there are slight differences in the degree of familiarity with specific aspects of biophilic design. Additionally, a substantial majority expressed confidence in their capability to extrapolate and apply the course content to other academic disciplines. Furthermore, students conveyed a sense of acquiring substantial knowledge and awareness about biophilic design during the course, enabling them to engage in comprehensive discussions on the subject and confidently evaluate the built environment using biophilic design principles by the course’s conclusion. The participants’ responses regarding their knowledge of biophilic design have been summarized in Fig. 8.

Fig. 8
figure 8

The responses of students regarding the biophilic design knowledge.

About the evaluation of learning outcomes and instructor’s performance, there was a notable consensus among respondents. Nineteen students strongly agreed, and four students agreed that the learning outcomes were intricately linked to the course content. Moreover, a significant majority of students strongly agreed or agreed that the course provided pertinent resources aligning with the subject matter. Notably, students exhibited high positivity towards the course instructor, indicating satisfaction and understanding in various aspects. They strongly agreed or agreed that the instructor’s explanations regarding assessment methods were lucid, demonstrating a clear grasp of evaluation criteria. Moreover, students found the instructor’s approach in the course to be fitting and the responses indicate a high level of endorsement for the course. Twenty respondents strongly agreed, while three respondents agreed that they would recommend the course to others. The responses related to students’ perceptions of learning outcomes, the instructor, and the overall quality of the course are presented in Fig. 9 for reference.

Fig. 9
figure 9

Evaluation of learning outcomes, instructor’s behavior, and course quality.

link

Leave a Reply

Your email address will not be published. Required fields are marked *