Analyzing the network structure of students’ motivation to learn AI: a self-determination theory perspective

0
Analyzing the network structure of students’ motivation to learn AI: a self-determination theory perspective
  • Chan, C. K. Y. & Zhou, W. An expectancy-value theory (EVT) based instrument for measuring student perceptions of generative AI. Smart Learn. Environ. 10, 64 (2023).

    Google Scholar 

  • Chiu, T. K. Future research recommendations for transforming higher education with generative AI. Comput. Educ. Artif. Intell. 6, 100197 (2024).

    Google Scholar 

  • Yu, H., Miao, C., Leung, C. & White, T. J. Towards AI-powered personalization in MOOC learning. npj Sci. Learn. 2, 15 (2017).

    Google Scholar 

  • Dwivedi, Y. K. et al. Opinion Paper: “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. Int. J. Inf. Manag. 71, 102642 (2023).

    Google Scholar 

  • Ng, D. T. K. et al. A review of AI teaching and learning from 2000 to 2020. Educ. Inf. Technol. 28, 8445–8501 (2023).

    Google Scholar 

  • Long, Y., Luo, H. & Zhang, Y. Evaluating large language models in analysing classroom dialogue. npj Sci. Learn. 9, 60 (2024).

    Google Scholar 

  • Chiu, T. K., Xia, Q., Zhou, X., Chai, C. S. & Cheng, M. Systematic literature review on opportunities, challenges, and future research recommendations of artificial intelligence in education. Comput. Educ. Artif. Intell. 4, 100118 (2023).

    Google Scholar 

  • UNESCO. Artificial intelligence for sustainable development programme, (2019).

  • Zhang, D. et al. The AI index 2021 annual report (Human-Centered AI Institute, Stanford University, 2021).

  • Chan, C. K. Y. A comprehensive AI policy education framework for university teaching and learning. Int. J. Educ. Technol. High. Educ. 20, 38 (2023).

    Google Scholar 

  • Fryer, L. K., Thompson, A., Nakao, K., Howarth, M. & Gallacher, A. Supporting self-efficacy beliefs and interest as educational inputs and outcomes: Framing AI and Human partnered task experiences. Learn. Individ. Differ. 80, 101850 (2020).

    Google Scholar 

  • Wu, R. & Yu, Z. Do AI chatbots improve students learning outcomes? Evidence from a meta-analysis. Br. J. Educ. Technol. 55, 10–33 (2024).

    Google Scholar 

  • Xu, Y., Wang, D., Collins, P., Lee, H. & Warschauer, M. Same benefits, different communication patterns: comparing Children’s reading with a conversational agent vs. a human partner. Comput. Educ. 161, 104059 (2021).

    Google Scholar 

  • Guay, F., Morin, A. J., Litalien, D., Howard, J. L. & Gilbert, W. Trajectories of self-determined motivation during secondary school: a growth mixture analysis. J. Educ. Psychol. 113, 390 (2021).

    Google Scholar 

  • Li, J., King, R. B. & Lee, V. W. Distinct trajectories of EFL motivation: a self-determination theory perspective. System 126, 103441 (2024).

    Google Scholar 

  • Litalien, D., Tóth-Király, I., Guay, F. & Morin, A. J. PhD students’ motivation profiles: a self-determination theory perspective. Contemp. Educ. Psychol. 77, 102279 (2024).

    Google Scholar 

  • Kriegbaum, K., Becker, N. & Spinath, B. The relative importance of intelligence and motivation as predictors of school achievement: a meta-analysis. Educ. Res. Rev. 25, 120–148 (2018).

    Google Scholar 

  • Schunk, D. H., Meece, J. R. & Pintrich, P. R. Motivation in education: theory, research, and applications (Pearson Higher Ed., 2012).

  • Scherrer, V., Preckel, F., Schmidt, I. & Elliot, A. J. Development of achievement goals and their relation to academic interest and achievement in adolescence: a review of the literature and two longitudinal studies. Dev. Psychol. 56, 795–814 (2020).

    Google Scholar 

  • Ryan, R. M. & Deci, E. L. Intrinsic and extrinsic motivations: classic definitions and new directions. Contemp. Educ. Psychol. 25, 54–67 (2000).

    CAS 

    Google Scholar 

  • Ryan, R. M. & Deci, E. L. Intrinsic and extrinsic motivation from a self-determination theory perspective: definitions, theory, practices, and future directions. Contemp. Educ. Psychol. 61, 101860 (2020).

    Google Scholar 

  • Urhahne, D. & Wijnia, L. Theories of motivation in education: an integrative framework. Educ. Psychol. Rev. 35, 45 (2023).

    Google Scholar 

  • Bureau, J. S., Howard, J. L., Chong, J. X. & Guay, F. Pathways to student motivation: a meta-analysis of antecedents of autonomous and controlled motivations. Rev. Educ. Res. 92, 46–72 (2022).

    Google Scholar 

  • Chiu, T. K., Moorhouse, B. L., Chai, C. S. & Ismailov, M. Teacher support and student motivation to learn with Artificial Intelligence (AI) based chatbot. Interact. Learn. Environ. 32, 3240–3256 (2024).

    Google Scholar 

  • Donald, J. N. et al. Mindfulness and its association with varied types of motivation: a systematic review and meta-analysis using self-determination theory. Pers. Soc. Psychol. Bull. 46, 1121–1138 (2020).

    Google Scholar 

  • Gillison, F. B., Rouse, P., Standage, M., Sebire, S. J. & Ryan, R. M. A meta-analysis of techniques to promote motivation for health behaviour change from a self-determination theory perspective. Health Psychol. Rev. 13, 110–130 (2019).

    Google Scholar 

  • Standage, M., & Ryan, R. M. Self-determination theory in sport and exercise. In Handbook of sport psychology: social perspectives, cognition, and applications, 37–56 (John Wiley & Sons, Inc, 2020).

  • Gagné, M. et al. Understanding and shaping the future of work with self-determination theory. Nat. Rev. Psychol. 1, 378–392 (2022).

    Google Scholar 

  • Slemp, G. R. et al. Interpersonal supports for basic psychological needs and their relations with motivation, well-being, and performance: a meta-analysis. J. Pers. Soc. Psychol. 127, 1012–1037 (2024).

    Google Scholar 

  • Ryan, R. M. et al. We know this much is (meta-analytically) true: a meta-review of meta-analytic findings evaluating self-determination theory. Psychol. Bull. 148, 813 (2022).

    Google Scholar 

  • Sachisthal, M. S., Jansen, B. R., Dalege, J. & Raijmakers, M. E. Relating teenagers’ science interest network characteristics to later science course enrolment: an analysis of Australian PISA 2006 and Longitudinal Surveys of Australian Youth data. Aust. J. Educ. 64, 264–281 (2020).

    Google Scholar 

  • Lee, H. R. et al. Networks and directed acyclic graphs: initial steps to efficiently examine causal relations between expectancies, values, and prior achievement. Curr. Psychol. 43, 7547–7563 (2024).

    Google Scholar 

  • Kaplan, A. & Garner, J. K. A complex dynamic systems perspective on identity and its development: the dynamic systems model of role identity. Dev. Psychol. 53, 2036 (2017).

    Google Scholar 

  • Kaplan, A., Garner, J. K. & Brock, B. Identity and motivation in a changing world: a complex dynamic systems perspective. In Motivation in education at a time of global change (eds. Gonida, E. N. & Lemos, M. S.) 20, 101–127 (Emerald Publishing Limited, 2019).

  • Vansteenkiste, M., Ryan, R. M. & Soenens, B. Basic psychological need theory: advancements, critical themes, and future directions. Motiv. Emot. 44, 1–31 (2020).

    Google Scholar 

  • Su, Y. L. & Reeve, J. A meta-analysis of the effectiveness of intervention programs designed to support autonomy. Educ. Psychol. Rev. 23, 159–188 (2011).

    Google Scholar 

  • Van den Broeck, A., Ferris, D. L., Chang, C. H. & Rosen, C. C. A review of self-determination theory’s basic psychological needs at work. J. Manag. 42, 1195–1229 (2016).

    Google Scholar 

  • Zhou, L. H., Ntoumanis, N. & Thøgersen-Ntoumani, C. Effects of perceived autonomy support from social agents on motivation and engagement of Chinese primary school students: psychological need satisfaction as mediator. Contemp. Educ. Psychol. 58, 323–330 (2019).

    Google Scholar 

  • Cerasoli, C. P., Nicklin, J. M. & Nassrelgrgawi, A. S. Performance, incentives, and needs for autonomy, competence, and relatedness: a meta-analysis. Motiv. Emot. 40, 781–813 (2016).

    Google Scholar 

  • Ryan, R. M., & Deci, E. L. Self-determination theory: basic psychological needs in motivation, development and wellness (The Guilford Press, 2017).

  • Venkatesh, V., Morris, M. G., Davis, G. B. & Davis, F. D. User acceptance of information technology: toward a unified view. MIS Q 27, 425–478 (2003).

    Google Scholar 

  • Sohn, K. & Kwon, O. Technology acceptance theories and factors influencing artificial Intelligence-based intelligent products. Telemat. Inform. 47, 101324 (2020).

    Google Scholar 

  • Wang, F., King, R. B., Chai, C. S. & Zhou, Y. University students’ intentions to learn artificial intelligence: the roles of supportive environments and expectancy–value beliefs. Int. J. Educ. Technol. High. Educ. 20, 51 (2023).

    Google Scholar 

  • An, X., Chai, C. S., Li, Y., Zhou, Y. & Yang, B. Modeling students’ perceptions of artificial intelligence assisted language learning. Comput. Assist. Lang. Learn. 1–22 (2023).

  • Chatterjee, S. & Bhattacharjee, K. K. Adoption of artificial intelligence in higher education: a quantitative analysis using structural equation modelling. Educ. Inf. Technol. 25, 3443–3463 (2020).

    Google Scholar 

  • Ng, D. T. K., Wu, W., Leung, J. K. L., Chiu, T. K. F. & Chu, S. K. W. Design and validation of the AI literacy questionnaire: the affective, behavioural, cognitive and ethical approach. Br. J. Educ. Technol. 55, 1082–1104 (2024).

    Google Scholar 

  • Putwain, D. W., Daumiller, M., Hussain, T., & Pekrun, R. Revisiting the relation between academic buoyancy and coping: a network analysis. Contemp. Educ. Psychol. 78, 102283 (2024).

  • Gijzen, M. W. et al. Suicide ideation as a symptom of adolescent depression. A network analysis. J. Affect. Disord. 278, 68–77 (2021).

    Google Scholar 

  • Levinson, C. A. et al. Social anxiety and eating disorder comorbidity and underlying vulnerabilities: using network analysis to conceptualize comorbidity. Int. J. Eat. Disord. 51, 693–709 (2018).

    Google Scholar 

  • Schönfelder, A. et al. Child abuse and suicidality in the context of the interpersonal psychological theory of suicide: a network analysis. Br. J. Clin. Psychol. 60, 425–442 (2021).

    Google Scholar 

  • Liu, S., Zhang, D., Wang, X., Ying, J. & Wu, X. A network approach to understanding parenting: Linking coparenting, parenting styles, and parental involvement in rearing adolescents in different age groups. Dev. Psychol. 59, 786–800 (2023).

    Google Scholar 

  • Kolar, D. R. et al. Pathways between child maltreatment, psychological symptoms, and life satisfaction: a network analysis in adolescent inpatients. Res. Child Adolesc. Psychopathol. 52, 1–14 (2024).

    Google Scholar 

  • Han, H. Examining the network structure among moral functioning components with network analysis. Pers. Individ. Differ. 217, 112435 (2024).

    Google Scholar 

  • Schmittmann, V. D. et al. Deconstructing the construct: a network perspective on psychological phenomena. N. Ideas Psychol. 31, 43–53 (2013).

    Google Scholar 

  • Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998).

    CAS 

    Google Scholar 

  • Borsboom, D. et al. Network analysis of multivariate data in psychological science. Nat. Rev. Methods Prim. 1, 58 (2021).

    CAS 

    Google Scholar 

  • Vu, T. et al. Motivation-achievement cycles in learning: a literature review and research agenda. Educ. Psychol. Rev. 34, 39–71 (2021).

    Google Scholar 

  • Epskamp, S., Borsboom, D. & Fried, E. I. Estimating psychological networks and their accuracy: a tutorial paper. Behav. Res. Methods 50, 195–212 (2018).

    Google Scholar 

  • Howard, J. L., Bureau, J. S., Guay, F., Chong, J. X. & Ryan, R. M. Student motivation and associated outcomes: a meta-analysis from self-determination theory. Perspect. Psychol. Sci. 16, 1300–1323 (2021).

    Google Scholar 

  • Borsboom, D. & Cramer, A. O. Network analysis: an integrative approach to the structure of psychopathology. Annu. Rev. Clin. Psychol. 9, 91–121 (2013).

    Google Scholar 

  • Field, A. Discovering statistics using SPSS (SAGE Publications, 2013).

  • McNally, R. Can network analysis transform psychopathology?. Behav. Res. Ther. 86, 95–104 (2016).

    Google Scholar 

  • Burger, J. et al. Reporting standards for psychological network analyses in cross-sectional data. Psychol. Methods 28, 806–824 (2023).

    Google Scholar 

  • Wang, T. & Cheng, E. C. K. An investigation of barriers to Hong Kong K-12 schools incorporating artificial intelligence in education. Comput. Educ. Artif. Intell. 2, 100031 (2021).

    Google Scholar 

  • Wu, F. et al. Towards a new generation of artificial intelligence in China. Nat. Mach. Intell. 2, 312–316 (2020).

    Google Scholar 

  • Hepper, E. G., Sedikides, C. & Cai, H. Self-enhancement and self-protection strategies in China: Cultural expressions of a fundamental human motive. J. Cross Cult. Psychol. 44, 5–23 (2013).

    Google Scholar 

  • Kam, C. C. S. & Bond, M. H. Role of emotions and behavioural responses in mediating the impact of face loss on relationship deterioration: are Chinese more face-sensitive than Americans?. Asian J. Soc. Psychol. 11, 175–184 (2008).

    Google Scholar 

  • King, R. B. Is a performance-avoidance achievement goal always maladaptive? Not necessarily for collectivists. Pers. Individ. Differ. 99, 190–195 (2016).

    Google Scholar 

  • Scherrer, V. & Preckel, F. Development of motivational variables and self-esteem during the school career: a meta-analysis of longitudinal studies. Rev. Educ. Res. 89, 211–258 (2019).

    Google Scholar 

  • Xie, K., Vongkulluksn, V. W., Cheng, S. L. & Jiang, Z. Examining high-school students’ motivation change through a person-centered approach. J. Educ. Psychol. 114, 89 (2022).

    Google Scholar 

  • Luo, Y. M., Lin, J. P. & Yang, Y. Students’ motivation and continued intention with online self-regulated learning: a self-determination theory perspective. Z. Erziehungswiss. 24, 1379–1399 (2021).

    Google Scholar 

  • Cheng, R. W. Y. & Lam, S. F. The interaction between social goals and self-construal on achievement motivation. Contemp. Educ. Psychol. 38, 136–148 (2013).

    Google Scholar 

  • Zusho, A. & King, R. B. Cross-cultural research on learning and teaching. InHandbook of educational psychology (eds. Schutz P. A. & Muis K. R.) 92–118 (Routledge, 2023).

  • Chiu, T. K. F. Digital support for student engagement in blended learning based on self-determination theory. Comput. Hum. Behav. 124, 106909 (2021).

    Google Scholar 

  • Chiu, T. K. F. Applying the Self-determination Theory (SDT) to explain student engagement in online learning during the COVID-19 pandemic. J. Res. Technol. Educ. 54, 14–30 (2022).

    Google Scholar 

  • Vansteenkiste, M., Sierens, E., Soenens, B., Luyckx, K. & Lens, W. Motivational profiles from a self-determination perspective: the quality of motivation matters. J. Educ. Psychol. 101, 671 (2009).

    Google Scholar 

  • Chai, C. S., Teo, T., Huang, F., Chiu, T. K. & Xing Wei, W. Secondary school students’ intentions to learn AI: testing moderation effects of readiness, social good and optimism. Educ. Technol. Res. Dev. 70, 765–782 (2022).

    Google Scholar 

  • Dai, Y. Why students use or not use generative AI: student conceptions, concerns, and implications for engineering education. Digit. Eng. 4, 100019 (2024).

  • Chai, C. S., Liang, S. & Wang, X. A survey study of Chinese teachers’ continuous intentions to teach artificial intelligence. Educ. Inf. Technol. 29, 14015–14034 (2024).

  • Zou, M., & Huang, L. The impact of ChatGPT on L2 writing and expected responses: voice from doctoral students. Educ. Inf. Technol. 29, 13201–13219 (2023).

  • Fryer, L. K., Nakao, K. & Thompson, A. Chatbot learning partners: connecting learning experiences, interest and competence. Comput Hum. Behav. 93, 279–289 (2019).

    Google Scholar 

  • Xie, K. & Ke, F. The role of students’ motivation in peer-moderated asynchronous online discussions. Br. J. Educ. Technol. 42, 916–930 (2011).

    Google Scholar 

  • Li, J., King, R. B., Chai, C. S., Zhai, X. & Lee, V. W. The AI Motivation Scale (AIMS): a self-determination theory perspective. J. Res. Technol. Educ. 1–22 (2025)..

  • Arora, N. et al. Investigating factors influencing scholastic execution at undergrad level using network analytics. In Proceedings of the Third International Conference on Advanced Informatics for Computing Research (ACM, 2019).

  • Freeborn, L., Andringa, S., Lunansky, G. & Rispens, J. Network analysis for modeling complex systems in SLA research. Stud. Second Lang. Acquis. 45, 526–557 (2023).

    Google Scholar 

  • Hoorelbeke, K., Marchetti, I., De Schryver, M. & Koster, E. H. The interplay between cognitive risk and resilience factors in remitted depression: a network analysis. J. Affect. Disord. 195, 96–104 (2016).

    Google Scholar 

  • Robinaugh, D. J., Millner, A. J. & McNally, R. J. Identifying highly influential nodes in the complicated grief network. J. Abnorm. Psychol. 125, 747 (2016).

    Google Scholar 

  • Blanchard, M. A., Roskam, I., Mikolajczak, M. & Heeren, A. A network approach to parental burnout. Child Abus. Negl. 111, 104826 (2021).

    Google Scholar 

  • Elliott, H., Jones, P. J. & Schmidt, U. Central symptoms predict posttreatment outcomes and clinical impairment in anorexia nervosa: a network analysis. Clin. Psychol. Sci. 8, 139–154 (2020).

    Google Scholar 

  • King, R. B. & McInerney, D. M. Family-support goals drive engagement and achievement in a collectivist context: integrating etic and emic approaches in goal research. Contemp. Educ. Psychol. 58, 338–353 (2019).

    Google Scholar 

  • Tao, V. Y. & Hong, Y. Y. When academic achievement is an obligation: perspectives from social-oriented achievement motivation. J. Cross Cult. Psychol. 45, 110–136 (2014).

    Google Scholar 

  • Li, J., King, R. B. & Wang, C. Profiles of motivation and engagement in foreign language learning: associations with emotional factors, academic achievement, and demographic features. System 108, 102820 (2022).

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *