Artificial intelligence in educational technology and transformative approaches to English language using fuzzy framework with CRITIC-TOPSIS method
Zadeh, L. A. Fuzzy sets. Inf. Control 8(3), 338–353. (1965).
Atanassov, K. T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96. (1986).
Google Scholar
Yager, R. R. Pythagorean fuzzy subsets. In 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 57–61 (IEEE, 2013).
Yager, R. R. Generalized orthopair fuzzy sets. IEEE Trans. Fuzzy Syst. 25(5), 1222–1230 (2016).
Zeb, A. et al. Optimizing decision-making in electric power system selection: A generalized approach based on Hamacher aggregation operators for q-rung orthopair fuzzy soft sets. Appl. Energy 367, 123405 (2024).
Senapati, T. et al. Intuitionistic fuzzy power Aczel-Alsina model for prioritization of sustainable transportation sharing practices. Eng. Appl. Artif. Intell. 119, 105716 (2023).
Dong, J.-Y. & Wan, S.-P. Interval-valued intuitionistic fuzzy best-worst method with additive consistency. Expert Syst. Appl. 236, 121213 (2024).
Xu, Z. Intuitionistic fuzzy aggregation operators. IEEE Trans. Fuzzy Syst. 15(6), 1179–1187 (2007).
Xu, Z. & Yager, R. R. Some geometric aggregation operators based on intuitionistic fuzzy sets. Int. J. Gen. Syst. 35(4), 417–433. (2006).
Google Scholar
Yin, S., Zhao, Y., Hussain, A. & Ullah, K. Comprehensive evaluation of rural regional integrated clean energy systems considering multi-subject interest coordination with Pythagorean fuzzy information. Eng. Appl. Artif. Intell. 138, 109342 (2024).
Wang, Y., Hussain, A., Yin, S., Ullah, K. & Božanić, D. Decision-making for solar panel selection using Sugeno-Weber triangular norm-based on q-rung orthopair fuzzy information. Front. Energy Res. 11, 1293623 (2024).
Anjum, M., Simic, V., Alrasheedi, M. & Shahab, S. T-spherical fuzzy-CRITIC-WASPAS model for the evaluation of cooperative intelligent transportation system scenarios. IEEE Access (2024). Accessed Feb 25, 2025. https://ieeexplore.ieee.org/abstract/document/10506487/
Hussain, A., Ullah, K., Pamucar, D., Haleemzai, I. & Tatić, D. Assessment of solar panel using multiattribute decision-making approach based on intuitionistic fuzzy Aczel Alsina Heronian mean operator. Int. J. Intell. Syst. 2023, 1–22. (2023).
Garg, H., Waqas, M., Ali, Z. & Emam, W. EDAS method for circular pythagorean fuzzy with improved Dombi power aggregation operators and their application in policy analysis and decision support systems. Alex. Eng. J. 106, 172–193 (2024).
Razzaq, A., Riaz, M. & Aslam, M. Efficient picture fuzzy soft CRITIC-CoCoSo framework for supplier selection under uncertainties in Industry 4.0. AIMS Math. 9(1), 665–701 (2024).
Google Scholar
Garg, H., Gwak, J., Mahmood, T. & Ali, Z. Power aggregation operators and VIKOR methods for complex q-rung orthopair fuzzy sets and their applications. Mathematics 8(4), 538 (2020).
Kutlu Gündoğdu, F., Kahraman, C. & Karaşan, A. Spherical fuzzy VIKOR method and its application to waste management. In Intelligent and Fuzzy Techniques in Big Data Analytics and Decision Making. Advances in Intelligent Systems and Computing Vol. 1029 (eds Kahraman, C. et al.) 997–1005 (Springer, 2020).
Hussain, A., Ullah, K., Alshahrani, M. N., Yang, M.-S. & Pamucar, D. Novel Aczel-Alsina operators for Pythagorean fuzzy sets with application in multi-attribute decision making. Symmetry 14(5), 940 (2022).
Google Scholar
Rawat, S. S. et al. A novel group decision-making approach based on partitioned Hamy mean operators in q-rung orthopair fuzzy context. Complex Intell. Syst. 10(1), 1375–1408. (2024).
Petchimuthu, S., Kamacı, H. & Senapati, T. Evaluation of artificial intelligence-based solid waste segregation technologies through multi-criteria decision-making and complex q-rung picture fuzzy frank aggregation operators. Eng. Appl. Artif. Intell. 133, 108154 (2024).
Sen, S., Sahoo, L. & Ghosh, S. L. Lifetime extension of wireless sensor networks by perceptive selection of cluster head using K-means and Einstein weighted averaging aggregation operator under uncertainty. J. Ind. Intell. 2(1), 54–62 (2024).
Hussain, I. & Alam, L. Adaptive road crack detection and segmentation using Einstein operators and ANFIS for real-time applications. J. Intell. Syst. Control 3(4), 213–226 (2024).
Sarfraz, M. & Božanić, D. Optimization of market risk via Maclaurin symmetric mean aggregation operators: An application of interval-valued intuitionistic fuzzy sets in multi-attribute group decision-making. J. Eng. Manag. Syst. Eng. 3(2), 100–115 (2024).
Rahman, K. & Muhammad, J. Enhanced decision-making through induced confidence-level complex polytopic fuzzy aggregation operators. Int. J. Knowl. Innov. Stud. 2(1), 11–18 (2024).
Rahman, K. Strategic placement of nuclear power plants in Pakistan: A complex Polytopic fuzzy model approach with confidence level assessment. J. Oper. Strat. Anal. 2, 107–118 (2024).
Ahmed, M., Ashraf, S. & Mashat, D. S. Complex intuitionistic hesitant fuzzy aggregation information and their application in decision making problems. Acadlore Trans. Appl. Math. Stat. 2(1), 1–21. (2024).
Moslem, S. A novel parsimonious best worst method for evaluating travel mode choice. IEEE Access 11, 16768–16773 (2023).
Riaz, M. & Farid, H. M. A. Enhancing green supply chain efficiency through linear Diophantine fuzzy soft-max aggregation operators. J. Ind. Intell. 1(1), 8–29 (2023).
Dymova, L., Kaczmarek, K., Sevastjanov, P., Sułkowski, Ł & Przybyszewski, K. An approach to generalization of the intuitionistic fuzzy topsis method in the framework of evidence theory. J. Artif. Intell. Soft Comput. Res. 11(2), 157–175. (2021).
Menekşe, A. & Akdağ, H. C. Medical waste disposal planning for healthcare units using spherical fuzzy CRITIC-WASPAS. Appl. Soft Comput. 144, 110480 (2023).
Ali, Z., Mahmood, T., Ullah, K. & Khan, Q. Einstein geometric aggregation operators using a novel complex interval-valued pythagorean fuzzy setting with application in green supplier chain management. Rep. Mech. Eng. 2(1), 105–134 (2021).
Hussain, A., Ullah, K., Mubasher, M., Senapati, T. & Moslem, S. Interval-valued Pythagorean fuzzy information aggregation based on Aczel-Alsina operations and their application in multiple attribute decision making. IEEE Access 11, 34575–34594 (2023).
Hussain, A., Ullah, K., Pamucar, D. & Simic, V. Intuitionistic fuzzy Sugeno-Weber decision framework for sustainable digital security assessment. Eng. Appl. Artif. Intell. 137, 109085 (2024).
Ali, S., Naveed, H., Siddique, I. & Zulqarnain, R. M. Extension of interaction geometric aggregation operator for material selection using interval-valued intuitionistic fuzzy hypersoft set. J. Oper. Intell. 2(1), 14–35 (2024).
Ullah, K., Naeem, M., Hussain, A., Waqas, M. & Haleemzai, I. Evaluation of electric motor cars based frank power aggregation operators under picture fuzzy information and a multi-attribute group decision-making process. IEEE Access 11, 67201–67219 (2023).
Irvanizam, I., Nasution, M. K., Tulus, T. & Nababan, E. B. An extended CRITIC algorithm based on spherical fuzzy sets to determine the objective weights of decision-makers. In 2024 Ninth International Conference on Informatics and Computing (ICIC), 1–7 (IEEE, 2024). Accessed May 26, 2025. https://ieeexplore.ieee.org/abstract/document/10956362/
Krishnan, A. R., Kasim, M. M., Hamid, R. & Ghazali, M. F. A modified CRITIC method to estimate the objective weights of decision criteria. Symmetry 13, 973 (2021).
Google Scholar
Zhong, S., Chen, Y. & Miao, Y. Using improved CRITIC method to evaluate thermal coal suppliers. Sci. Rep. 13(1), 195 (2023).
Google Scholar
Rasheed, M. W., Mahboob, A., Amin, L. & Hussain, A. Ranking polycystic ovarian syndrome (PCOS) drugs using degree-based indices in QSPR models and CRITIC-driven MCDM methods. Sci. Rep. 15(1), 1–20 (2025).
Jin, C., Mi, J., Li, F. & Liang, M. An improved TOPSIS method for multi-criteria decision making based on hesitant fuzzy β neighborhood. Artif. Intell. Rev. 56(S1), 793–831. (2023).
Irvanizam, I. Application of the fuzzy topsis multi-attribute decision making method to determine scholarship recipients. In Journal of Physics: Conference Series, 012056 (IOP Publishing, 2018). Accessed May 26, 2025. https://doi.org/10.1088/1742-6596/978/1/012056/meta
Abdullah, S., Almagrabi, A. O. & Ullah, I. A new approach to artificial intelligent based three-way decision making and analyzing S-box image encryption using TOPSIS method. Mathematics 11(6), Art. no. 6 (2023). https://doi.org/10.3390/math11061559.
Garg, H., Ali, Z., Mahmood, T. & Ali, M. R. TOPSIS-method based on generalized dice similarity measures with hamy mean operators and its application to decision-making process. Alex. Eng. J. 65, 383–397 (2023).
Alkan, N. & Kahraman, C. Circular intuitionistic fuzzy TOPSIS method: pandemic hospital location selection. J. Intell. Fuzzy Syst. 42(1), 295–316. (2021).
Gul, M. & Ak, M. F. A modified failure modes and effects analysis using interval-valued spherical fuzzy extension of TOPSIS method: case study in a marble manufacturing facility. Soft Comput. 25(8), 6157–6178. (2021).
Khan, A. A. et al. Pythagorean fuzzy Dombi aggregation operators and their application in decision support system. Symmetry 11(3), 383 (2019).
Google Scholar
Hussain, A. et al. Decision algorithm for picture fuzzy sets and Aczel Alsina aggregation operators based on unknown degree of wights. Heliyon 10(6), e27548 (2024).
Google Scholar
Akram, M. & Bilal, M. Analytical solution of bipolar fuzzy heat equation using homotopy perturbation method. Granul. Comput. 8(6), 1253–1266. (2023).
Akram, M., Naz, S. & Abbas, T. Complex q-rung orthopair fuzzy 2-tuple linguistic group decision-making framework with Muirhead mean operators. Artif. Intell. Rev. 56(9), 10227–10274. (2023).
Garg, H. & ur Rehman, U. A group decision-making algorithm to analyses risk evaluation of hepatitis with sine trigonometric laws under bipolar complex fuzzy sets information. J. Innov. Res. Math. Comput. Sci. 3(1), 65–90 (2024).
Garg, H., Dutta, D., Dutta, P. & Gohain, B. An extended group decision-making algorithm with intuitionistic fuzzy set information distance measures and their applications. Comput. Ind. Eng. 197, 110537 (2024).
Lai, Y.-J., Liu, T.-Y. & Hwang, C.-L. Topsis for MODM. Eur. J. Oper. Res. 76(3), 486–500 (1994).
Deveci, M., Gokasar, I., Pamucar, D., Coffman, D. & Papadonikolaki, E. Safe E-scooter operation alternative prioritization using a q-rung orthopair Fuzzy Einstein based WASPAS approach. J. Clean. Prod. 347, 131239 (2022).
Akram, M. & Shahzadi, G. A hybrid decision-making model under q-rung orthopair fuzzy Yager aggregation operators. Granul. Comput. 6(4), 763–777 (2021).
Darko, A. P. & Liang, D. Some q-rung orthopair fuzzy Hamacher aggregation operators and their application to multiple attribute group decision making with modified EDAS method. Eng. Appl. Artif. Intell. 87, 103259 (2020).
Seikh, M. R. & Mandal, U. Q-rung orthopair fuzzy Frank aggregation operators and its application in multiple attribute decision-making with unknown attribute weights. Granul. Comput. 7(3), 709–730. (2022).
Chen, S.-J. & Hwang, C.-L. Fuzzy multiple attribute decision making methods. In Fuzzy Multiple Attribute Decision Making. Lecture Notes in Economics and Mathematical Systems, vol. 375, 289–486. (Springer, 1992). https://doi.org/10.1007/978-3-642-46768-4_5.
Diakoulaki, D., Mavrotas, G. & Papayannakis, L. Determining objective weights in multiple criteria problems: The critic method. Comput. Oper. Res. 22(7), 763–770 (1995).
Ali Abd Al-Hameed, K. Spearman’s correlation coefficient in statistical analysis. Int. J. Nonlinear Anal. Appl. 13(1), 3249–3255. (2022).
Güneri, B. & Deveci, M. Evaluation of supplier selection in the defense industry using q-rung orthopair fuzzy set based EDAS approach. Expert Syst. Appl. 222, 119846 (2023).
Pınar, A., Babak Daneshvar, R. & Özdemir, Y. S. q-Rung orthopair fuzzy TOPSIS method for green supplier selection problem. Sustainability 13(2), 985 (2021).
Farid, H. M. A. & Riaz, M. q-rung orthopair fuzzy Aczel-Alsina aggregation operators with multi-criteria decision-making. Eng. Appl. Artif. Intell. 122, 106105 (2023).
Farid, H. M. A. & Riaz, M. Some generalized q-rung orthopair fuzzy Einstein interactive geometric aggregation operators with improved operational laws. Int. J. Intell. Syst. 36(12), 7239–7273. (2021).
Riaz, M., Garg, H., Farid, H. M. A. & Aslam, M. Novel q-rung orthopair fuzzy interaction aggregation operators and their application to low-carbon green supply chain management. J. Intell. Fuzzy Syst. 41(2), 4109–4126. (2021).
Gül, S. Picture Fuzzy Extension of DEMATEL and its Usage in Educational Quality Evaluation. In New Perspectives in Operations Research and Management Science. International Series in Operations Research & Management Science Vol. 326 (eds Topcu, Y. I. et al.) 471–497 (Springer, 2022).
Mahmood, T., Ullah, K., Khan, Q. & Jan, N. An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets. Neural Comput. Appl. 31(11), 7041–7053. (2019).
Mahmood, T., ur Rehman, U. & Ali, Z. Analysis and application of Aczel-Alsina aggregation operators based on bipolar complex fuzzy information in multiple attribute decision making. Inf. Sci. 619, 817–833 (2023).
link
