Elucidating university students’ intentions to seek automated writing feedback from Grammarly: toward perceptual and systemic predictors

0
Elucidating university students’ intentions to seek automated writing feedback from Grammarly: toward perceptual and systemic predictors
  • Abbad M (2021) Using the UTAUT model to understand students’ usage of e-learning systems in developing countries. Educ Inf Technol 26:7205–7224. https://doi.org/10.1007/s10639-021-10573-5

    Article 
    MATH 

    Google Scholar 

  • Aboagye E, Yawson JA, Appiah KN (2021) COVID-19 and e-learning: The challenges of students in tertiary institutions. Soc Educ Res 1-8. https://doi.org/10.37256/ser.212021422

  • Abubakir H, Alshaboul Y (2023) Unravelling EFL teachers’ mastery of TPACK: Technological pedagogical and content knowledge in writing classes. Heliyon 9(6). https://doi.org/10.1016/j.heliyon.2023.e17348

  • Al-Adwan AS, Yaseen H, Alsoud A, Abousweilem F, Al-Rahmi WM (2022) Novel extension of the UTAUT model to understand continued usage intention of learning management systems: The role of learning tradition. Educ Inf Technol 27:3567–3593. https://doi.org/10.1007/s10639-021-10758-y

    Article 
    MATH 

    Google Scholar 

  • Al-Ghaith W (2015) Applying the technology acceptance model to understand social networking sites (SNS) usage: Impact of perceived social capital. Int J Comput Sci Inf Technol 7(4):105–117. https://doi.org/10.5121/ijcsit.2015.7409

    Article 

    Google Scholar 

  • AL-Sayid F, Kirkil G (2023) Exploring non-linear relationships between perceived interactivity or interface design and acceptance of collaborative web-based learning. Educ Inf Technol 1-48. https://doi.org/10.1007/s10639-023-11635-6

  • Berhan Y, Dessalegn M, Hetyey A, Assamnew B, Tsegaye S, Makonnen M, Abebe S (2023) Learners and system readiness for digital learning in the Ethiopian health sector: the path to blended learning. Int J Mob Learn Organ 17(4):557–573. https://doi.org/10.1504/IJMLO.2023.133773

    Article 

    Google Scholar 

  • Bhattacherjee A (2001) Understanding information systems continuance: An expectation-confirmation model. MIS Quart 351-370. https://doi.org/10.2307/3250921

  • Bond M, Marín VI, Dolch C, Bedenlier S, Zawacki-Richter O (2018) Digital transformation in German higher education: student and teacher perceptions and usage of digital media. Int J Educ Technol High Educ 15(1):48. https://doi.org/10.1186/s41239-018-0130-1

    Article 

    Google Scholar 

  • Budhathoki T, Zirar A, Njoya ET, Timsina A (2024) ChatGPT adoption and anxiety: a cross-country analysis utilising the unified theory of acceptance and use of technology (UTAUT). Stud Higher Educ 1-16. https://doi.org/10.1080/03075079.2024.2333937

  • Chang A (2012) UTAUT and UTAUT 2: A review and agenda for future research. Winners 13(2):106–114

    MATH 

    Google Scholar 

  • Chang CW, Heo J, Yeh SC, Han HY, Li M (2018) The effects of immersion and interactivity on college students’ acceptance of a novel VR-supported educational technology for mental rotation. IEEE Access 6:66590–66599. https://doi.org/10.1109/ACCESS.2018.2878270

    Article 

    Google Scholar 

  • Chang HH, Fu CS, Huang CY (2017) Willingness to adopt or reuse an e-learning system: The perspectives of self-determination and perceived characteristics of innovation. Innov Educ Teach Int 54(5):511–520. http://doi-org-s.webvpn.zju.edu.cn:8001/10.1080/14703297.2016.1194768

    Article 
    MATH 

    Google Scholar 

  • Chang TS, Li Y, Huang HW, Whitfield B (2021) Exploring EFL students’ writing performance and their acceptance of AI-based automated writing feedback. In Proceedings of the 2021 2nd International Conference on Education Development and Studies (pp. 31-35). https://doi.org/10.1145/3459043.3459065

  • Chang YS, Chou CH, Chuang MJ, Li WH, Tsai IF (2023) Effects of virtual reality on creative design performance and creative experiential learning. Interact Learn Environ 31(2):1142–1157. https://doi.org/10.1080/10494820.2020.1821717

    Article 
    MATH 

    Google Scholar 

  • Chatterjee S, Bhattacharjee KK, Tsai CW, Agrawal AK (2021) Impact of peer influence and government support for successful adoption of technology for vocational education: A quantitative study using PLS-SEM technique. Qual Quant 55:2041–2064. https://doi.org/10.1007/s11135-021-01100-2

    Article 

    Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences. In Erlbaum association (2nd ed.). Lawrence Erlbaum Associates

  • Costley J, Lange C (2023) The mediating effect of sequencing and fading on the relationship between e-learning personalization and germane load. Interact Learn Environ 31(6):3436–3446. https://doi.org/10.1080/10494820.2021.1929334

    Article 
    MATH 

    Google Scholar 

  • Dautzenberg PS, Voß GM (2022) A theoretical framework for trust in automation considering its relationship to technology acceptance and its influencing factors. In AHFE International Conference (Vol. 27). https://doi.org/10.54941/ahfe1002462

  • Dawson P, Yan Z, Lipnevich A, Tai J, Boud D, Mahoney P (2023) Measuring what learners do in feedback: The feedback literacy behaviour scale. Assessment & Evaluat Higher Educ 1-15. https://doi.org/10.1080/02602938.2023.2240983

  • Deeva G, Bogdanova D, Serral E, Snoeck M, De Weerdt J (2021) A review of automated feedback systems for learners: Classification framework, challenges and opportunities. Comput Educ 162:104094. https://doi.org/10.1016/j.compedu.2020.104094

    Article 

    Google Scholar 

  • Deng X, Yu Z (2023) An extended hedonic motivation adoption model of TikTok in higher education. Educ Inf Technol. https://doi.org/10.1007/s10639-023-11749-x

  • Ding L, Zou D (2024) Automated writing evaluation systems: A systematic review of Grammarly, Pigai, and Criterion with a perspective on future directions in the age of generative artificial intelligence. Educ Inf Technol 1-53. https://doi.org/10.1007/s10639-023-12402-3

  • Dörnyei Z (2007) Research methods in applied linguistics. Oxford University Press

  • Fan N (2023) Exploring the effects of automated written corrective feedback on EFL students’ writing quality: A mixed-methods study. SAGE Open 13(2):21582440231181296. https://doi.org/10.1177/21582440231181296

    Article 

    Google Scholar 

  • Farooq MS, Salam M, Jaafar N, Fayolle A, Ayupp K, Radovic-Markovic M, Sajid A (2017) Acceptance and use of lecture capture system (LCS) in executive business studies: Extending UTAUT2. Interact Technol Smart Educ 14(4):329–348. https://doi.org/10.1108/ITSE-06-2016-0015

    Article 

    Google Scholar 

  • Fitria TN (2021) Grammarly as AI-powered English writing assistant: Students’ alternative for writing English. Metathesis: J Engl Lang, Lit, Teach 5(1):65–78. https://doi.org/10.31002/metathesis.v5i1.3519

    Article 

    Google Scholar 

  • Fornell C, Larcker DF (1981) Evaluating structural equation models with unobservable variables and measurement error. J Mark Res 18(1):39–50. https://doi.org/10.1177/002224378101800104

    Article 

    Google Scholar 

  • Foster S (2019) What barriers do students perceive to engagement with automated immediate formative feedback. J Interactive Media Educ 2019(1). https://doi.org/10.5334/jime.516

  • Fu QK, Zou D, Xie H, Cheng G (2022) A review of AWE feedback: types, learning outcomes, and implications. Comput Assisted Lang Learn 1-43. https://doi.org/10.1080/09588221.2022.2033787

  • Gao J (2021) Exploring the feedback quality of an automated writing evaluation system Pigai. Int J Emerg Technol Learn 16(11):322–330. https://doi.org/10.3991/ijet.v16i11.19657

    Article 
    MATH 

    Google Scholar 

  • Gao Z, Cheah JH, Lim XJ, Luo X (2024) Enhancing academic performance of business students using generative AI: An interactive-constructive-active-passive (ICAP) self-determination perspective. Int J Manag Educ 22(2):100958. https://doi.org/10.1016/j.ijme.2024.100958

    Article 

    Google Scholar 

  • Gedrimiene E, Celik I, Kaasila A, Mäkitalo K, Muukkonen H (2024) Artificial intelligence (AI)-enhanced learning analytics (LA) for supporting career decisions: Advantages and challenges from user perspective. Educ Inf Technol 29(1):297–322. https://doi.org/10.1007/s10639-023-12277-4

    Article 

    Google Scholar 

  • Geng J, Razali AB, Ismail L, Noordin N (2024) Effectiveness of automated writing evaluation program to enhance EFL undergraduates’ writing performance in China. Asia Pacific Educ Rev 1-16. https://doi.org/10.1007/s12564-023-09922-5

  • Go H, Kang M, Suh SC (2020) Machine learning of robots in tourism and hospitality: interactive technology acceptance model (iTAM)–cutting edge. Tour Rev 75(4):625–636. https://doi.org/10.1108/TR-02-2019-0062

    Article 

    Google Scholar 

  • Grammarly (2024) Retrieved from https://www.grammarly.com/

  • Guo Q, Feng R, Hua Y (2022) How effectively can EFL students use automated written corrective feedback (AWCF) in research writing? Comput Assist Lang Learn 35(9):2312–2331. https://doi.org/10.1080/09588221.2021.1879161

    Article 
    MATH 

    Google Scholar 

  • Hair JF, Hult GTM, Ringle CM (2014) Partial least squares structural equation modeling (PLS-SEM). SAGE Publications

  • Hair JF, Risher JJ, Sarstedt M, Ringle CM (2019) When to use and how to report the results of PLS-SEM. Eur Bus Rev 31(1):2–24. https://doi.org/10.1108/EBR-11-2018-0203

    Article 
    MATH 

    Google Scholar 

  • Hair Jr, JF, Hult GTM, Ringle CM, Sarstedt M (2021) A primer on partial least squares structural equation modeling (PLS-SEM). Sage publications

  • Henseler J, Ringle CM, Sarstedt M (2014) A new criterion for assessing discriminant validity in variance-based structural equation modeling. J Acad Mark Sci 43(1):115–135. https://doi.org/10.1007/s11747-014-0403-8

    Article 
    MATH 

    Google Scholar 

  • Herting DC, Cladellas Pros R, Castelló Tarrida A (2023) Habit and social influence as determinants of PowerPoint use in higher education: A study from a technology acceptance approach. Interact Learn Environ 31(1):497–513. https://doi.org/10.1080/10494820.2020.1799021

    Article 

    Google Scholar 

  • Hidayat-ur-Rehman I, Ibrahim Y (2023) Exploring factors influencing educators’ adoption of ChatGPT: a mixed method approach. Interactive Technol Smart Educ 1-36. https://doi.org/10.1108/ITSE-07-2023-0127

  • Horta H, Li H (2023) Nothing but publishing: The overriding goal of PhD students in mainland China, Hong Kong, and Macau. Stud High Educ 48(2):263–282. https://doi.org/10.1080/03075079.2022.2131764

    Article 

    Google Scholar 

  • Hou YK, Yu ZG (2023) The unified theory of acceptance and use of DingTalk for educational purposes in China: An extended structural equation model. Humanities Soc Sci Commun 10(1):1–12. https://doi.org/10.1057/s41599-023-02257-x

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Huang X, Xu W, Li F, Yu Z (2024) A meta-analysis of effects of automated writing evaluation on anxiety, motivation, and second language writing skills. Asia-Pac Educ Res 33:957–976. https://doi.org/10.1007/s40299-024-00865-y

    Article 
    MATH 

    Google Scholar 

  • Huang Y, Xu W, Sukjairungwattana P, Yu Z (2024) Learners’ continuance intention in multimodal language learning education: An innovative multiple linear regression model. Heliyon 10(6):E28104. https://doi.org/10.1016/j.heliyon.2024.e28104

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huawei S, Aryadoust V (2023) A systematic review of automated writing evaluation systems. Educ Inf Technol 28(1):771–795. https://doi.org/10.1007/s10639-022-11260-9

    Article 
    MATH 

    Google Scholar 

  • Hutcheson GD, Sofroniou N (1999) The multivariate social scientist: Introductory statistics using generalized linear models. Sage Publications Ltd

  • Hwang GJ, Chen PY (2023) Effects of a collective problem-solving promotion-based flipped classroom on students’ learning performances and interactive patterns. Interact Learn Environ 31(5):2513–2528. https://doi.org/10.1080/10494820.2019.1568263

    Article 
    MATH 

    Google Scholar 

  • Ismatullaev UVU, Kim SH (2024) Review of the factors affecting acceptance of AI-infused systems. Hum Factors 66(1):126–144. https://doi.org/10.1177/00187208211064707

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Johnson JB, Reddy P, Chand R, Naiker M (2021) Attitudes and awareness of regional Pacific Island students towards e-learning. Int J Educ Technol High Educ 18(1):1–20. https://doi.org/10.1186/s41239-021-00248-z

    Article 

    Google Scholar 

  • Kassim ES, Jailani SFAK, Hairuddin H, Zamzuri NH (2012) Information system acceptance and user satisfaction: The mediating role of trust. Procedia-Soc Behav Sci 57:412–418. https://doi.org/10.1016/j.sbspro.2012.09.1205

    Article 

    Google Scholar 

  • Kennewell S, Tanner H, Jones S, Beauchamp G (2008) Analysing the use of interactive technology to implement interactive teaching. J Comput Assist Learn 24(1):61–73. https://doi.org/10.1111/j.1365-2729.2007.00244.x

    Article 

    Google Scholar 

  • Kikawa CR, Kiconco C, Agaba M, Ntirampeba D, Ssematimba A, Kalema BM (2022) Social media marketing for small and medium enterprise performance in Uganda: A structural equation model. Sustainability 14(21):14391. https://doi.org/10.3390/su142114391

    Article 

    Google Scholar 

  • Kim HW, Chan HC, Gupta S (2007) Value-based adoption of mobile internet: an empirical investigation. Decis Support Syst 43(1):111–126. https://doi.org/10.1016/j.dss.2005.05.009

    Article 
    MATH 

    Google Scholar 

  • King RB, Yeung SSS, Cai Y (2019) Personal investment theory: A multi-faceted framework to understand second and foreign language motivation. System 86:102123. https://doi.org/10.1016/j.system.2019.102123

    Article 
    MATH 

    Google Scholar 

  • Kline RB (2015) In DA Kenny & TD Little (Eds.), Principles and practice of structural equation modeling. Guilford publications

  • Kloppers J (2023) Errors in errors: an exploration of Grammarly’s corrective feedback. Int J Comput-Assist Lang Learn Teach 13(1):1–16. https://doi.org/10.4018/IJCALLT.325792

    Article 
    MATH 

    Google Scholar 

  • Kock N (2015) Common method bias in PLS-SEM: A full collinearity assessment approach. Int J e-Collaboration 11(4):1–10. https://doi.org/10.4018/ijec.2015100101

    Article 
    MATH 

    Google Scholar 

  • Kolb DA (2014) Experiential learning: Experience as the source of learning and development. FT press

  • Koltovskaia S (2020) Student engagement with automated written corrective feedback (AWCF) provided by Grammarly: A multiple case study. Assess Writ 44:100450. https://doi.org/10.1016/j.asw.2020.100450

    Article 
    MATH 

    Google Scholar 

  • Lakhal S, Khechine H (2021) Technological factors of students’ persistence in online courses in higher education: The moderating role of gender, age and prior online course experience. Educ Inf Technol 26:3347–3373. https://doi.org/10.1007/s10639-020-10407-w

    Article 
    MATH 

    Google Scholar 

  • Li AW (2023) Using Peerceptiv to support AI-based online writing assessment across the disciplines. Assess Writ 57:100746. https://doi.org/10.1016/j.asw.2023.100746

    Article 
    MATH 

    Google Scholar 

  • Li M, Wang T (2024) Optimizing learning return on investment: Identifying learning strategies based on user behavior characteristic in language learning applications. Educ Inf Technol 29:6651–6681. https://doi.org/10.1007/s10639-023-12078-9

    Article 
    MATH 

    Google Scholar 

  • Li R (2021) Modeling the continuance intention to use automated writing evaluation among Chinese EFL learners. SAGE Open 11(4):21582440211060782. https://doi.org/10.1177/21582440211060782

    Article 
    ADS 

    Google Scholar 

  • Li R, Meng Z, Tian M, Zhang Z, Ni C, Xiao W (2019) Examining EFL learners’ individual antecedents on the adoption of automated writing evaluation in China. Comput Assist Lang Learn 32(7):784–804. https://doi.org/10.1080/09588221.2018.1540433

    Article 

    Google Scholar 

  • Lim K, Song J, Park J (2023) Neural automated writing evaluation for Korean L2 writing. Nat Lang Eng 29(5):1341–1363. https://doi.org/10.1017/S1351324922000298

    Article 
    MATH 

    Google Scholar 

  • Lin Y, Yu Z (2023) Extending technology acceptance model to higher-education students’ use of digital academic reading tools on computers. Int J Educ Technol High Educ 20:34. https://doi.org/10.1186/s41239-023-00403-8

    Article 
    MATH 

    Google Scholar 

  • Lin Y, Yu Z (2024a) Learner perceptions of artificial intelligence-generated pedagogical agents in language learning videos: Embodiment effects on technology acceptance. Int J Human–Comput Interact 1-22. https://doi.org/10.1080/10447318.2024.2359222

  • Lin Y, Yu Z (2024b) An integrated bibliometric analysis and systematic review modelling students’ technostress in higher education. Behav Inf Technol 1-25. https://doi.org/10.1080/0144929X.2024.2332458

  • Link S, Mehrzad M, Rahimi M (2022) Impact of automated writing evaluation on teacher feedback, student revision, and writing improvement. Comput Assist Lang Learn 35(4):605–634. https://doi.org/10.1080/09588221.2020.1743323

    Article 

    Google Scholar 

  • Liu C, Hou J, Tu YF, Wang Y, Hwang GJ (2021) Incorporating a reflective thinking promoting mechanism into artificial intelligence-supported English writing environments. Interact Learning Environ 1-19. https://doi.org/10.1080/10494820.2021.2012812

  • Locke E, Latham G (2015) Goal-setting theory. In Organizational Behavior 1 (pp. 159-183). Routledge

  • Lowry PB, Gaskin J (2014) Partial least squares (PLS) structural equation modeling (SEM) for building and testing behavioral causal theory: When to choose it and how to use it. IEEE Trans Professional Commun 57(2):123–146. https://doi.org/10.1109/TPC.2014.2312452

    Article 
    MATH 

    Google Scholar 

  • Mai DTT, Da CV, Hanh NV (2024) The use of ChatGPT in teaching and learning: A systematic review through SWOT analysis approach. Front Educ 9:1328769. https://doi.org/10.3389/feduc.2024.1328769

    Article 

    Google Scholar 

  • McCarthy KS, Roscoe RD, Allen LK, Likens AD, McNamara DS (2022) Automated writing evaluation: Does spelling and grammar feedback support high-quality writing and revision? Assess Writ 52:100608. https://doi.org/10.1016/j.asw.2022.100608

    Article 

    Google Scholar 

  • Meschitti V (2019) Can peer learning support doctoral education? Evidence from an ethnography of a research team. Stud High Educ 44(7):1209–1221. https://doi.org/10.1080/03075079.2018.1427711

    Article 
    MATH 

    Google Scholar 

  • Mishra A, Shukla A, Rana NP, Currie WL, Dwivedi YK (2023) Re-examining post-acceptance model of information systems continuance: a revised theoretical model using MASEM approach. Int J Inf Manag 68:102571. https://doi.org/10.1016/j.ijinfomgt.2022.102571

    Article 

    Google Scholar 

  • Mou J, Shin DH, Cohen J (2017) Understanding trust and perceived usefulness in the consumer acceptance of an e-service: a longitudinal investigation. Behav Inf Technol 36(2):125–139. https://doi.org/10.1080/0144929X.2016.1203024

    Article 

    Google Scholar 

  • Nguyen BTT (2023) Using online tools to help students elevate lexical range in English-as-a-foreign-language writing. RELC J 00336882231217528. https://doi.org/10.1177/00336882231217528

  • Nunes A, Cordeiro C, Limpo T, Castro SL (2022) Effectiveness of automated writing evaluation systems in school settings: A systematic review of studies from 2000 to 2020. J Comput Assist Learn 38(2):599–620. https://doi.org/10.1111/jcal.12635

    Article 

    Google Scholar 

  • Obeid A, Ibrahim R, Fadhil A (2024) Extended model of expectation confirmation model to examine users’ continuous intention toward the utilization of e-learning platforms. IEEE Access 12:40752–40764. https://doi.org/10.1109/ACCESS.2024.3373190

    Article 

    Google Scholar 

  • Obilor EI (2023) Convenience and purposive sampling techniques: Are they the same. Int J Innovat Soc Sci Educ Res 11(1):1–7

    Google Scholar 

  • Ozili PK (2023) The acceptable R-square in empirical modelling for social science research. In Social research methodology and publishing results: A guide to non-native English speakers (pp. 134-143). IGI Global

  • Papakostas C, Troussas C, Krouska A, Sgouropoulou C (2023) Exploring users’ behavioral intention to adopt mobile augmented reality in education through an extended technology acceptance model. Int J Hum -Comput Interact 39(6):1294–1302. https://doi.org/10.1080/10447318.2022.2062551

    Article 

    Google Scholar 

  • Pasupuleti RS, Thiyyagura D (2024) An empirical evidence on the continuance and recommendation intention of ChatGPT among higher education students in India: An extended technology continuance theory. Educ Inf Technol 1-21. https://doi.org/10.1007/s10639-024-12573-7

  • Patil H, Undale S (2023) Willingness of university students to continue using e-learning platforms after compelled adoption of technology: Test of an extended UTAUT model. Educ Inf Technol 28(11):14943–14965. https://doi.org/10.1007/s10639-023-11778-6

    Article 

    Google Scholar 

  • Pham L, Limbu YB, Bui TK, Nguyen HT, Pham HT (2019) Does e-learning service quality influence e-learning student satisfaction and loyalty? Evidence from Vietnam. Int J Educ Technol High Educ 16(1):1–26. https://doi.org/10.1186/s41239-019-0136-3

    Article 
    MATH 

    Google Scholar 

  • Raffaghelli JE, Rodríguez ME, Guerrero-Roldán AE, Bañeres D (2022) Applying the UTAUT model to explain the students’ acceptance of an early warning system in higher education. Comput Educ 182:104468. https://doi.org/10.1016/j.compedu.2022.104468

    Article 

    Google Scholar 

  • Rafiee M, Abbasian-Naghneh S (2021) E-learning: development of a model to assess the acceptance and readiness of technology among language learners. Comput Assist Lang Learn 34(5-6):730–750. https://doi.org/10.1080/09588221.2019.1640255

    Article 
    MATH 

    Google Scholar 

  • Ranalli J (2021) L2 student engagement with automated feedback on writing: Potential for learning and issues of trust. J Second Lang Writ 52:100816. https://doi.org/10.1016/j.jslw.2021.100816

    Article 
    MATH 

    Google Scholar 

  • Rasheed RA, Kamsin A, Abdullah NA (2020) Challenges in the online component of blended learning: A systematic review. Comput Educ 144:103701. https://doi.org/10.1016/j.compedu.2019.103701

    Article 
    MATH 

    Google Scholar 

  • Raza SA, Qazi W, Khan KA, Salam J (2020) Social isolation and acceptance of the learning management system (LMS) in the time of COVID-19 pandemic: An expansion of the UTAUT model. J Educ Comput Res 59(2):183–208. https://doi.org/10.1177/0735633120960421

    Article 
    MATH 

    Google Scholar 

  • Ringle CM, Wende S, Becker JM (2024) SmartPLS 4. Bönningstedt: SmartPLS. Retrieved from https://www.smartpls.com

  • Roscoe RD, Wilson J, Johnson AC, Mayra CR (2017) Presentation, expectations, and experience: Sources of student perceptions of automated writing evaluation. Comput Hum Behav 70:207–221. https://doi.org/10.1016/j.chb.2016.12.076

    Article 

    Google Scholar 

  • Rotsaert T, Panadero E, Schellens T, Raes A (2018) “Now you know what you’re doing right and wrong!” Peer feedback quality in synchronous peer assessment in secondary education. Eur J Psychol Educ 33:255–275. https://doi.org/10.1007/s10212-017-0329-x

    Article 

    Google Scholar 

  • Saeed MA, Alharbi MA (2023) Towards fostering Saudi EFL learners’ collaborative engagement and feedback literacy in writing. Assess Writ 56:100721. https://doi.org/10.1016/j.asw.2023.100721

    Article 
    MATH 

    Google Scholar 

  • Saricaoglu A, Bilki Z (2021) Voluntary use of automated writing evaluation by content course students. ReCALL 33(3):265–277. https://doi.org/10.1017/S0958344021000021

    Article 

    Google Scholar 

  • Sarstedt M, Mooi E (2014) A concise guide to market research: The process, data, and, methods using IBM SPSS statistics (2nd edition). London: Springer

  • Schworm S, Gruber H (2012) E-learning in universities: Supporting help-seeking processes by instructional prompts. Br J Educ Technol 43(2):272–281. https://doi.org/10.1111/j.1467-8535.2011.01176.x

    Article 
    MATH 

    Google Scholar 

  • Strzelecki A (2024) Students’ acceptance of ChatGPT in higher education: An extended unified theory of acceptance and use of technology. Innov High Educ 49:223–245. https://doi.org/10.1007/s10755-023-09686-1

    Article 
    MATH 

    Google Scholar 

  • Sun H, Guo R (2024) The effect of metaverse concert characteristics on user re-participation intention: A combination of the ETAM and the SPICE model. Int J Human-Comput Interaction, 1-14. https://doi.org/10.1080/10447318.2024.2331859

  • Sun Z, Yang Y (2023) The mediating role of learner empowerment in the relationship between the community of inquiry and online learning outcomes. Internet High Educ 58:100911. https://doi.org/10.1016/j.iheduc.2023.100911

    Article 

    Google Scholar 

  • Sungur-Gül K, Ateş H (2021) Understanding pre-service teachers’ mobile learning readiness using theory of planned behavior. Educ Technol Soc 24(2):44–57. https://www.jstor.org/stable/27004930

    MATH 

    Google Scholar 

  • Tian L, Zhou Y (2020) Learner engagement with automated feedback, peer feedback and teacher feedback in an online EFL writing context. System 91:102247. https://doi.org/10.1016/j.system.2020.102247

    Article 
    MATH 

    Google Scholar 

  • Trivedi SK, Patra P, Singh S (2022) A study on intention to use social media in higher education: the mediating effect of peer influence. Glob Knowl, Mem Commun 71(1/2):52–69. https://doi.org/10.1108/GKMC-11-2020-0169

    Article 
    MATH 

    Google Scholar 

  • van Eck NJ, Waltman L (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84(2):523–538. https://doi.org/10.1007/s11192-009-0146-3

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Venkatesh V, Brown SA, Maruping LM, Bala H (2008) Predicting different conceptualizations of system use: The competing roles of behavioral intention, facilitating conditions, and behavioral expectation. MIS Q 32(3):483–502. https://doi.org/10.2307/25148853

    Article 
    MATH 

    Google Scholar 

  • Venkatesh V, Morris MG (2000) Why don’t men ever stop to ask for directions? Gender, social influence, and their role in technology acceptance and usage behavior. MIS Quart 115-139. https://doi.org/10.2307/3250981

  • Venkatesh V, Morris MG, Davis GB, Davis FD (2003) User acceptance of information technology: Toward a unified view. MIS Q 27(3):425–478. https://doi.org/10.2307/30036540

    Article 
    MATH 

    Google Scholar 

  • Venkatesh V, Thong JY, Chan FK, Hu PJH, Brown SA (2011) Extending the two-stage information systems continuance model: Incorporating UTAUT predictors and the role of context. Inf Syst J 21(6):527–555. https://doi.org/10.1111/j.1365-2575.2011.00373.x

    Article 

    Google Scholar 

  • Vorm ES, Combs DJ (2022) Integrating transparency, trust, and acceptance: The intelligent systems technology acceptance model (ISTAM). Int J Hum –Comput Interact 38(18-20):1828–1845. https://doi.org/10.1080/10447318.2022.2070107

    Article 
    MATH 

    Google Scholar 

  • Wang CL, Chen XJ, Yu T, Liu YD, Jing YH (2024) Education reform and change driven by digital technology: A bibliometric study from a global perspective. Human Soc Sci Commun 11:256. https://doi.org/10.1057/s41599-024-02717-y

    Article 
    MATH 

    Google Scholar 

  • Wang EL, Matsumura LC, Correnti R, Litman D, Zhang H, Howe E, Quintana R (2020) eRevis (ing): Students’ revision of text evidence use in an automated writing evaluation system. Assess Writ 44:100449. https://doi.org/10.1016/j.asw.2020.100449

    Article 

    Google Scholar 

  • Wang Y, Luo X, Liu CC, Tu YF, Wang N (2022) An integrated automatic writing evaluation and SVVR approach to improve students’ EFL writing performance. Sustainability 14(18):11586. https://doi.org/10.3390/su141811586

    Article 

    Google Scholar 

  • Wang Y, Yu L, Yu ZG (2022) An extended CCtalk technology acceptance model in EFL education. Educ Inf Technol 27(5):6621–6640. https://doi.org/10.1007/s10639-022-10909-9

    Article 
    MATH 

    Google Scholar 

  • Wei P, Wang X, Dong H (2023) The impact of Automated writing evaluation (AWE) on second language writing skills of Chinese EFL learners: A randomized controlled trial. Front Psychol 14:1249991. https://doi.org/10.3389/fpsyg.2023.1249991

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Woitt S, Weidlich J, Jivet I, Orhan Göksün D, Drachsler H, Kalz M (2023) Students’ feedback literacy in higher education: An initial scale validation study. Teaching Higher Educ 1-20. https://doi.org/10.1080/13562517.2023.2263838

  • Wu JH, Tennyson RD, Hsia TL (2010) A study of student satisfaction in a blended e-learning system environment. Comput Educ 55(1):155–164. https://doi.org/10.1016/j.compedu.2009.12.012

    Article 
    MATH 

    Google Scholar 

  • Yang H, Gao C, Shen HZ (2023) Learner interaction with, and response to, AI-programmed automated writing evaluation feedback in EFL writing: An exploratory study. Educ Inf Technol, 1-22. https://doi.org/10.1007/s10639-023-11991-3

  • Yao Y, Wang W, Yang X (2021) Perceptions of the inclusion of automatic writing evaluation in peer assessment on EFL writers’ language mindsets and motivation: A short-term longitudinal study. Assess Writ 50:100568. https://doi.org/10.1016/j.asw.2021.100568

    Article 

    Google Scholar 

  • Yu L, Chen Z, Yao P, Liu H (2021) A study on the factors influencing users’ online knowledge paying-behavior based on the UTAUT model. J Theor Appl Electron Commer Res 16(5):1768–1790. https://doi.org/10.3390/jtaer16050099

    Article 
    MATH 

    Google Scholar 

  • Yu T, Dai J, Chen X, Wang C (2024) Factors influencing continuance intention in blended learning among business school students in China: based on grounded theory and FsQCA. Interactive Learn Environ 1-28. https://doi.org/10.1080/10494820.2024.2370477

  • Yu Z, Yu L (2023) Examining factors that influence learner retention in MOOCs during the COVID-19 pandemic time. Sage Open 13(2):21582440231175371. https://doi.org/10.1177/21582440231175371

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu Z, Yu X (2019) An extended technology acceptance model of a mobile learning technology. Comput Appl Eng Educ 27(3):721–732. https://doi.org/10.1002/cae.22111

    Article 
    MATH 

    Google Scholar 

  • Zadorozhnyy A, Lee JS (2023) Informal Digital Learning of English and willingness to communicate in a second language: self-efficacy beliefs as a mediator. Comput Assisted Lang Learn 1-21. https://doi.org/10.1080/09588221.2023.2215279

  • Zhai N, Ma X (2022) Automated writing evaluation (AWE) feedback: A systematic investigation of college students’ acceptance. Comput Assist Lang Learn 35(9):2817–2842. https://doi.org/10.1080/09588221.2021.1897019

    Article 
    MATH 

    Google Scholar 

  • Zhai N, Ma X (2023) The effectiveness of automated writing evaluation on writing quality: A meta-analysis. J Educ Comput Res 61(4):875–900. https://doi.org/10.1177/07356331221127300

    Article 
    MATH 

    Google Scholar 

  • Zhang Y, Liu G (2022) Revisiting informal digital learning of English (IDLE): A structural equation modeling approach in a university EFL context. Comput Assisted Lang Learn. https://doi.org/10.1080/09588221.2022.2134424

  • Zhang Z, Hyland K (2022) Fostering student engagement with feedback: An integrated approach. Assess Writ 51:100586. https://doi.org/10.1016/j.asw.2021.100586

    Article 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *