Exploring the categories of students’ interest and their relationships with deep learning in technology supported environments

0
Exploring the categories of students’ interest and their relationships with deep learning in technology supported environments
  • Harackiewicz, J. M., Smith, J. L. & Priniski, S. J. Interest matters: The importance of promoting interest in education. Policy Insights Behav. Brain Sci. 3 (2), 220–227. (2016).

    Article 
    MATH 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Montazami, A. et al. Why this app? How educators choose a good educational app. Comput. Educ. 184, 104513. (2022).

    Article 

    Google Scholar 

  • Wong, J. T. & Hughes, B. S. Leveraging learning experience design: Digital media approaches to influence motivational traits that support student learning behaviors in undergraduate online courses. J. Comput. High. Educ. 35 (3), 595–632. (2023).

    Article 

    Google Scholar 

  • Sung, H. Y., Hwang, G. J., Chen, C. Y. & Liu, W. X. A contextual learning model for developing interactive e-books to improve students’ performances of learning the analects of Confucius. Interact. Learn. Environs. 30 (3), 470–483. (2022).

    Article 

    Google Scholar 

  • Xu, E. W., Wang, W. & Wang, Q. X. The effectiveness of collaborative problem solving in promoting students’ critical thinking: A meta-analysis based on empirical literature. Hum. Soc. Sci. Commun. 10 (1), 11. (2023).

    Article 
    MATH 

    Google Scholar 

  • Schiefele, U. Interest, learning, and motivation. Educ. Psychol. 26 (3–4), 299–323. (1991).

    Article 
    MATH 

    Google Scholar 

  • Krapp, A. Interest, motivation and learning: An educational-psychological perspective. Eur. J. Psychol. Educ. 14, 23–40. (1999).

    Article 
    MATH 

    Google Scholar 

  • Hidi, S. & Renninger, K. A. The four-phase model of interest development. Educ. Psychol. 41 (2), 111–127. (2006).

    Article 
    MATH 

    Google Scholar 

  • Harackiewicz, J. M., Durik, A. M., Barron, K. E., Linnenbrink-Garcia, L. & Tauer, J. M. The role of achievement goals in the development of interest: Reciprocal relations between achievement goals, interest, and performance. J. Educ. Psychol. 100 (1), 105. (2008).

    Article 

    Google Scholar 

  • Renninger, K. A., Hidi, S. & Krapp, A. The Role of Interest in Learning and Development (Lawrence Erlbaum, 1992).

  • Hidi, S. Interest and its contribution as a mental resource for learning. Rev. Educ. Res. 60 (4), 549–571. (1990).

    Article 
    MATH 

    Google Scholar 

  • Palmer, D., Dixon, J. & Archer, J. Using situational interest to enhance individual interest and science-related behaviours. Res. Sci. Educ. 47, 731–753. (2017).

    Article 

    Google Scholar 

  • Ainley, M. Interest: Knowns, unknowns, and basic processes. in The Science of Interest (eds. O’Keefe, P., Harackiewicz, J.) (2017). https://doi.org/10.1007/978-3-319-55509-6_1

  • Zainuddin, Z., Chu, S. K. W., Shujahat, M. & Perera, C. J. The impact of gamification on learning and instruction: A systematic review of empirical evidence. Educ. Res. Rev. 30, 100326. (2020).

    Article 

    Google Scholar 

  • David, L. & Weinstein, N. Using technology to make learning fun: technology use is best made fun and challenging to optimize intrinsic motivation and engagement. Eur. J. Psychol. Educ. 1–23. (2023).

    Article 
    MATH 

    Google Scholar 

  • Wong, J. T., Chen, E., Au-Yeung, N., Lerner, B. S. & Richland, L. E. Fostering engaging online learning experiences: Investigating situational interest and mind-wandering as mediators through learning experience design. Educ. Inf. Technol. 1–27. (2024).

    Article 

    Google Scholar 

  • Vongkulluksn, V. W., Matewos, A. M., Sinatra, G. M. & Marsh, J. A. Motivational factors in makerspaces: A mixed methods study of elementary school students’ situational interest, self-efficacy, and achievement emotions. Int. J. STEM Educ. 5, 1–19. (2018).

    Article 

    Google Scholar 

  • Schraw, G. & Lehman, S. Situational interest: A review of the literature and directions for future research. Educ. Psychol. Rev. 13, 23–52. (2001).

    Article 
    MATH 

    Google Scholar 

  • Nicholas, K. & Fletcher, J. What is happening in the use of ICT mathematics to support young adolescent learners? A new Zealand experience. Educ. Rev. 69 (4), 474–489. (2017).

    Article 
    MATH 

    Google Scholar 

  • Hwang, G. J., Wang, S. Y. & Lai, C. L. Effects of a social regulation-based online learning framework on students’ learning achievements and behaviors in mathematics. Comput. Educ. 160, 104031. (2021).

    Article 
    MATH 

    Google Scholar 

  • Wang, X. et al. What matters in AI-supported learning: A study of human-AI interactions in Language learning using cluster analysis and epistemic network analysis. Comput. Educ. 194, 104703. (2023).

    Article 
    MATH 

    Google Scholar 

  • Marton, F. & Säljö, R. On qualitative differences in learning: I—Outcome and process. Br. J. Educ. Psychol. 6 (1), 4–11. (1976).

    Article 

    Google Scholar 

  • Gijbels, D., Van de Watering, G., Dochy, F. & Van den Bossche, P. The relationship between students’ approaches to learning and the assessment of learning outcomes. Eur. J. Psychol. Educ. 20, 327–341. (2005).

    Article 

    Google Scholar 

  • Trigwell, K., Ellis, R. A. & Han, F. Relations between students’ approaches to learning, experienced emotions and outcomes of learning. Stud. High. Educ. 37 (7), 811–824. (2012).

    Article 
    MATH 

    Google Scholar 

  • Di, W., Danxia, X. & Chun, L. The effects of learner factors on higher-order thinking in the smart classroom environment. J. Comput. Educ. 6 (4), 483–498. (2019).

    Article 
    MATH 

    Google Scholar 

  • Ellis, R. A. & Bliuc, A. M. Exploring new elements of the student approaches to learning framework: The role of online learning technologies in student learning. Act. Learn. High. Educ. 20 (1), 11–24. (2019).

    Article 
    MATH 

    Google Scholar 

  • Han, J. & Geng, X. University students’ approaches to online learning technologies: The roles of perceived support, affect/emotion and self-efficacy in technology-enhanced learning. Comput. Educ. 194, 104695. (2023).

    Article 
    MATH 

    Google Scholar 

  • Yang, Y., Luo, J., Yang, M., Yang, R. & Chen, J. From surface to deep learning approaches with generative AI in higher education: An analytical framework of student agency. Stud. High. Educ.. (2024).

    Article 
    MATH 

    Google Scholar 

  • González, C., López, D., Calle-Arango, L., Montenegro, H. & Clasing, P. Chilean university students’ digital learning technology usage patterns and approaches to learning. ECNU Rev. Educ. 5 (1), 37–64. (2022).

    Article 

    Google Scholar 

  • Biggs, J. Differentiation of learning processes within ability groups. Educ. Psychol. 4 (1), 21–39. (1984).

    Article 
    MATH 

    Google Scholar 

  • Biggs, J., Kember, D. & Leung, D. Y. The revised two-factor study process questionnaire: R-SPQ-2F. Br. J. Educ. Psychol. 71 (1), 133–149. (2001).

    Article 
    CAS 
    MATH 
    PubMed 

    Google Scholar 

  • Kember, D., Biggs, J. & Leung, D. Y. Examining the multidimensionality of approaches to learning through the development of a revised version of the learning process questionnaire. Br. J. Educ. Psychol. 74 (2), 261–279. (2004).

    Article 
    MATH 
    PubMed 

    Google Scholar 

  • Liu, S., Liu, S., Liu, Z., Peng, X. & Yang, Z. Automated detection of emotional and cognitive engagement in MOOC discussions to predict learning achievement. Comput. Educ. 181, 104461. (2022).

    Article 
    MATH 

    Google Scholar 

  • Brown, J. S., Collins, A. & Duguid, P. Situated cognition and the culture of learning. Educ. Res. 18 (1), 32–42. (1989).

    Article 
    MATH 

    Google Scholar 

  • Li, X. & Chu, S. K. W. Exploring the effects of gamification pedagogy on children’s reading: A mixed-method study on academic performance, reading‐related mentality and behaviors, and sustainability. Br. J. Educ. Technol. 52 (1), 160–178. (2021).

    Article 
    MATH 

    Google Scholar 

  • Dubovi, I. Cognitive and emotional engagement while learning with VR: The perspective of multimodal methodology. Comput. Educ. 183, 104495. (2022).

    Article 
    MATH 

    Google Scholar 

  • Deci, E. L. & Ryan, R. M. Motivation, personality, and development within embedded social contexts: An overview of self-determination theory. Oxf. Handb. Hum. Motivation 18 (6), 85–107 (2012).

    Article 
    MATH 

    Google Scholar 

  • Bureau, J. S., Howard, J. L., Chong, J. X. & Guay, F. Pathways to student motivation: A meta-analysis of antecedents of autonomous and controlled motivations. Rev. Educ. Res. 92 (1), 46–72. (2022).

    Article 
    MATH 
    PubMed 

    Google Scholar 

  • Jack, B. M. & Lin, H. S. Warning! Increases in interest without enjoyment May not be trend predictive of genuine interest in learning science. Int. J. Educ. Dev. 62, 136–147. (2018).

    Article 
    MATH 

    Google Scholar 

  • Biggs, J. What do inventories of students’ learning processes really measure? A theoretical review and clarification. Br. J. Educ. Psychol. 63 (1), 3–19. (1993).

    Article 
    MATH 
    PubMed 

    Google Scholar 

  • Wu, X. Y. Exploring the effects of digital technology on deep learning: A meta-analysis. Educ. Inf. Technol. 29 (1), 425–458. (2024).

    Article 
    MATH 

    Google Scholar 

  • Dohn, N. B. Students’ interest in scratch coding in lower secondary mathematics. Br. J. Educ. Technol. 51 (1), 71–83. (2020).

    Article 
    MATH 

    Google Scholar 

  • Sugden, N., Brunton, R., MacDonald, J. B., Yeo, M. & Hicks, B. Evaluating student engagement and deep learning in interactive online psychology learning activities. Australas. J. Educ. Technol. 37 (2), 45–65. (2021).

    Article 

    Google Scholar 

  • Rotgans, J. I. & Schmidt, H. G. The role of teachers in facilitating situational interest in an active-learning classroom. Teach. Teach. Educ. 27 (1), 37–42. (2011).

    Article 
    MATH 

    Google Scholar 

  • Hair, J. F., Black, W. C., Babin, B. J. & Anderson, R. E. Multivariate Data Analysis 8th edn (Cengage Learning, 2019).

  • Chiu, C. M. & Wang, E. T. Understanding Web-based learning continuance intention: The role of subjective task value. Inf. Manag. 45 (3), 194–201. (2008).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Pastor, D. A., Barron, K. E., Miller, B. J. & Davis, S. L. A latent profile analysis of college students’ achievement goal orientation. Contemp. Educ. Psychol. 32 (1), 8–47. (2007).

    Article 

    Google Scholar 

  • Richardson, H. A., Simmering, M. J. & Sturman, M. C. A Tale of three perspectives: Examining post hoc statistical techniques for detection and correction of common method variance. Organ. Res. Methods 12 (4), 762–800. (2009).

    Article 

    Google Scholar 

  • Tein, J. Y., Coxe, S. & Cham, H. Statistical power to detect the correct number of classes in latent profile analysis. Struct. Equ Model. 20 (4), 640–657. (2013).

    Article 
    MathSciNet 

    Google Scholar 

  • Linnenbrink-Garcia, L. et al. Measuring situational interest in academic domains. Educ. Psychol. Meas. 70 (4), 647–671. (2010).

    Article 
    MATH 

    Google Scholar 

  • Rotgans, J. I. & Schmidt, H. G. Interest development: Arousing situational interest affects the growth trajectory of individual interest. Contemp. Educ. Psychol. 49, 175–184. (2017).

    Article 

    Google Scholar 

  • Yin, J., Goh, T. T., Yang, B. & Yang, X. Conversation technology with micro-learning: The impact of chatbot-based learning on students’ learning motivation and performance. J. Educ. Comput. Res. 59 (1), 154–177. (2021).

    Article 
    MATH 

    Google Scholar 

  • Lu, G., Xie, K. & Liu, Q. What influences student situational engagement in smart classrooms: Perception of the learning environment and students’ motivation. Br. J. Educ. Technol. 53 (6), 1665–1687. (2022).

    Article 
    MATH 

    Google Scholar 

  • Drymiotou, I., Constantinou, C. P. & Avraamidou, L. Enhancing students’ interest in science and understandings of STEM careers: The role of career-based scenarios. Int. J. Sci. Educ. 43 (5), 717–736. (2021).

    Article 

    Google Scholar 

  • Liu, C. C., Liao, M. G., Chang, C. H. & Lin, H. M. An analysis of children’ interaction with an AI chatbot and its impact on their interest in reading. Comput. Educ. 189, 104576. (2022).

    Article 
    MATH 

    Google Scholar 

  • Chen, S. Y. & Liu, S. Y. Using augmented reality to experiment with elements in a chemistry course. Comput. Hum. Behav. 111, 106418. (2020).

    Article 
    MATH 

    Google Scholar 

  • Lai, T. et al. The application of artificial intelligence technology in education influences Chinese adolescent’s emotional perception. Curr. Psychol. 43 (6), 5309–5317. (2024).

    Article 
    MATH 

    Google Scholar 

  • Happe, L., Buhnova, B., Koziolek, A. & Wagner, I. Effective measures to foster girls’ interest in secondary computer science education: A literature review. Educ. Inf. Technol. 26, 2811–2829. (2021).

    Article 
    MATH 

    Google Scholar 

  • Vos, N., Van Der Meijden, H. & Denessen, E. Effects of constructing versus playing an educational game on student motivation and deep learning strategy use. Comput. Educ. 56 (1), 127–137. (2011).

    Article 

    Google Scholar 

  • Takase, M., Niitani, M. & Imai, T. What educators could do to facilitate students’ use of a deep approach to learning: A multisite cross-sectional design. Nurs. Educ. Today 89, 104422. (2020).

    Article 
    MATH 

    Google Scholar 

  • Asikainen, H. & Gijbels, D. Do students develop towards more deep approaches to learning during studies? A systematic review on the development of students’ deep and surface approaches to learning in higher education. Educ. Psychol. Rev. 29, 205–234. (2017).

    Article 
    MATH 

    Google Scholar 

  • Fryer, L. K. & Ainley, M. Supporting interest in a study domain: A longitudinal test of the interplay between interest, utility-value, and competence beliefs. Learn. Instruc. 60, 252–262. (2019).

    Article 
    MATH 

    Google Scholar 

  • Ainley, M. Connecting with learning: Motivation, affect and cognition interest processes. Educ. Psychol. Rev. 18, 391–405. (2006).

    Article 

    Google Scholar 

  • Eccles, J. S. & Wigfield, A. Motivational beliefs, values, and goals. Annu. Rev. Psychol. 53 (1), 109–132. (2002).

    Article 
    MATH 
    PubMed 

    Google Scholar 

  • D’Mello, S., Lehman, B., Pekrun, R. & Graesser, A. Confusion can be beneficial for learning. Learn. Instruc. 29, 153–170. (2014).

    Article 
    MATH 

    Google Scholar 

  • Dirk, J. & Nett, U. E. Uncovering the situational impact in educational settings: Studies on motivational and emotional experiences. Learn. Instruc. 81, 101661. (2022).

    Article 
    MATH 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *